4.5 Article

Stimulatory Effect of RFRP-3 on the Gonadotrophic Axis in the Male Syrian Hamster: The Exception Proves the Rule

期刊

ENDOCRINOLOGY
卷 153, 期 3, 页码 1352-1363

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2011-1622

关键词

-

资金

  1. French Agence Nationale de la Recherche [BLAN-07-0056]
  2. Novo Nordisk Foundation
  3. Danish Medical Research Council

向作者/读者索取更多资源

In seasonal mammals, a distinct photoneuroendocrine circuit that involves the pineal hormone melatonin tightly synchronizes reproduction with seasons. In the Syrian hamster, a seasonal model in which sexual activity is inhibited by short days, we have previously shown that the potent GnRH stimulator, kisspeptin, is crucial to convey melatonin's message; however, the precise mechanisms through which melatonin affects kisspeptin remain unclear. Interestingly, rfrp gene expression in the neurons of the dorsomedial hypothalamic nucleus, a brain region in which melatonin receptors are present in the Syrian hamster, is strongly down-regulated by melatonin in short days. Because a large body of evidence now indicates that RFamide-related peptide (RFRP)-3, the product of the rfrp gene, is an inhibitor of gonadotropin secretion in various mammalian species, we sought to investigate its effect on the gonadotrophic axis in the Syrian hamster. We show that acute central injection of RFRP-3 induces c-Fos expression in GnRH neurons and increases LH, FSH, and testosterone secretion. Moreover, chronic central administration of RFRP-3 restores testicular activity and Kiss1 levels in the arcuate nucleus of hamsters despite persisting photoinhibitory conditions. By contrast RFRP-3 does not have a hypophysiotrophic effect. Overall, these findings demonstrate that, in the male Syrian hamster, RFRP-3 exerts a stimulatory effect on the reproductive axis, most likely via hypothalamic targets. This places RFRP-3 in a decisive position between the melatonergic message and Kiss1 seasonal regulation. Additionally, our data suggest for the first time that the function of this peptide depends on the species and the physiological status of the animal model. (Endocrinology 153: 1352-1363, 2012)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据