4.5 Article

Inherent Growth Hormone Resistance in the Skeletal Muscle of the Fine Flounder Is Modulated by Nutritional Status and Is Characterized by High Contents of Truncated GHR, Impairment in the JAK2/STAT5 Signaling Pathway, and Low IGF-I Expression

期刊

ENDOCRINOLOGY
卷 153, 期 1, 页码 283-294

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2011-1313

关键词

-

资金

  1. Fondo Nacional de Desarrollo Cientifico y Tecnologico [1090416]
  2. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) [2008-1258]
  3. Universidad Andres Bello Fund [DI-14-11/I]
  4. National Commission for Scientific and Technological Research

向作者/读者索取更多资源

A detailed understanding of how the GH and IGF-I regulate muscle growth, especially in early vertebrates, is still lacking. The fine flounder is a flatfish species exhibiting remarkably slow growth, representing an intriguing model for elucidating growth regulatory mechanisms. Key components of the GH system were examined in groups of fish during periods of feeding, fasting, and refeeding. Under feeding conditions, there is an inherent systemic and local (muscle) GH resistance, characterized by higher levels of plasma GH than of IGF-I, skeletal muscle with a greater content of the truncated GH receptor (GHRt) than of full-length GHR (GHRfl), an impaired activation of the Janus kinase 2 (JAK2)-signal transducers and activators of transcription 5 (STAT5) signaling pathway, and low IGF-I expression. Fasting leads to further elevation of plasma GH levels concomitant with suppressed IGF-I levels. The ratio of GHRfl to GHRt in muscle decreases during fasting, causing an inactivation of the JAK2/STAT5 signaling pathway and suppressed IGF-I expression, further impairing growth. When fish are returned to nutritionally favorable conditions, plasma GH levels decrease, and the ratio of GHRfl to GHRt in muscle increases, triggering JAK2/STAT5 reactivation and local IGF-I expression, concomitant with increased growth. The study suggests that systemic IGF-I is supporting basal slow growth in this species, without ruling out that local IGF-I is participating in muscle growth. These results reveal for the first time a unique model of inherent GH resistance in the skeletal muscle of a nonmammalian species and contribute to novel insights of the endocrine and molecular basis of growth regulation in earlier vertebrates. (Endocrinology 153:283-294, 2012)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据