4.5 Article

Evidence for a Celiac Ganglion-Ovarian Kisspeptin Neural Network in the Rat: Intraovarian Anti-Kisspeptin Delays Vaginal Opening and Alters Estrous Cyclicity

期刊

ENDOCRINOLOGY
卷 153, 期 10, 页码 4966-4977

出版社

OXFORD UNIV PRESS INC
DOI: 10.1210/en.2012-1279

关键词

-

资金

  1. Fondecyt [1090036, 1120147]
  2. Conicyt [21080495]
  3. [24110140]

向作者/读者索取更多资源

Kisspeptin and its receptor GPR54 have been described as key hypothalamic components in the regulation of GnRH secretion. Kisspeptin is also present in several regions of the central nervous system and the peripheral organs and has recently been identified in the superior ganglion. Herein, we tested the possibility that ovarian kisspeptin is regulated by the sympathetic nervous system and participates locally in the regulation of ovarian function. Both ovarian and celiac ganglion kisspeptin mRNA levels increase during development, whereas kisspeptin peptide levels and plasma levels decrease during development. In the celiac ganglion, kisspeptin colocalized with tyrosine hydroxylase, indicating potential kisspeptin synthesis and transport within the sympathetic neurons. A continuous (64 h) cold stress induced marked changes within the kisspeptin neural system along the celiac ganglion-ovary axis. In vitro incubation with the beta-adrenergic agonist isoproterenol increased ovarian kisspeptin mRNA and peptide levels, and this increase was inhibited by treatment with the beta-antagonist propranolol. Sectioning the superior ovarian nerve altered the feedback information within the kisspeptin celiac ganglion-ovary axis. In vivo administration of a kisspeptin antagonist to the left ovarian bursa of 22- to 50-d-old unilaterally ovariectomized rats delayed the vaginal opening, decreased the percentage of estrous cyclicity, and decreased plasma, ovarian, and celiac ganglion kisspeptin concentrations but did not modify the LH plasma levels. These results indicate that the intraovarian kisspeptin system may be regulated by sympathetic nerve activity and that the peptide, either from a neural or ovarian origin, is required for proper coordinated ovarian function. (Endocrinology 153: 4966-4977, 2012)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据