4.5 Article

Insulinoma-Associated Antigen-1 Zinc-Finger Transcription Factor Promotes Pancreatic Duct Cell Trans-Differentiation

期刊

ENDOCRINOLOGY
卷 151, 期 5, 页码 2030-2039

出版社

OXFORD UNIV PRESS INC
DOI: 10.1210/en.2009-1224

关键词

-

资金

  1. Research Institute for Children, Children's Hospital at New Orleans
  2. National Institute of Diabetes and Digestive and Kidney Diseases
  3. National Institutes of Health [DK61436]

向作者/读者索取更多资源

Insulinoma-associated antigen-1 (INSM1/IA-1) is a unique zinc-finger transcription factor restrictedly expressed in pancreatic beta-cells during early pancreas development. INSM1 is transiently activated by the islet-specific endocrine factor neurogenin 3, and it subsequently regulates downstream target genes NeuroD1 and insulin during beta-cell maturation. Here, we examined how the INSM1 transcription factor contributes to endocrine cell differentiation using a defined serum-free medium-primed pancreatic duct cell model. We showed that ectopic expression of INSM1 can promote Panc-1 cell trans-differentiation. INSM1 up-regulates two islet transcription factors (ITFs), paired box 6 and homeodomain transcription factor 6.1, whereas other ITFs, including pancreatic duodenal homeobox-1 (Pdx-1), homeodomain transcription factor 2.2, NeuroD1, paired box 4, and neurogenin 3, were either down-regulated or absent. The result suggests that INSM1 is capable of regulating multiple ITFs and the insulin gene either directly or indirectly. When we overexpressed three ITFs, INSM1/Pdx-1/NeuroD1, in the Panc-1 differentiation model, higher insulin expression was observed in parallel with the activation of an additional ITF, neurogenin 3, signifying endocrine cell activation. Insulin expression from the three ITFs stimulation was readily detected by immunostaining and increased 40% as compared with the insulin-transferrin-selenium-LacZ control. Furthermore, we examined the differential chromatin acetylation patterns within the insulin promoter region using the chromatin immunoprecipitation assay. INSM1 alone can selectively enhance acetylation of histone H4, whereas NeuroD1 and Pdx-1 favor the acetylation of histone H3. Both H3 and H4 histone acetylations facilitate insulin gene expression. The consistent functional effect of INSM1, either with or without other ITFs, promotes pancreatic duct cell differentiation as well as induces Panc-1 cell cycle arrest. (Endocrinology 151: 2030-2039, 2010)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据