4.5 Article

Mice Lacking β-Adrenergic Receptors Have Increased Bone Mass but Are Not Protected from Deleterious Skeletal Effects of Ovariectomy

期刊

ENDOCRINOLOGY
卷 150, 期 1, 页码 144-152

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2008-0843

关键词

-

资金

  1. Swiss National Science Foundation [631-62937]
  2. National Institutes of Health [AR49265]
  3. American Heart Association

向作者/读者索取更多资源

Activation of beta 2-adrenergic receptors inhibits osteoblastic bone formation and enhances osteoclastic bone resorption. Whether beta-blockers inhibit ovariectomy-induced bone loss and decrease fracture risk remains controversial. To further explore the role of beta-adrenergic signaling in skeletal acquisition and response to estrogen deficiency, we evaluated mice lacking the three known beta-adrenergic receptors (beta-less). Body weight, percent fat, and bone mineral density were significantly higher in male beta-less than wild-type (WT) mice, more so with increasing age. Consistent with their greater fat mass, serum leptin was significantly higher in beta-less than WT mice. Mid-femoral cross-sectional area and cortical thickness were significantly higher in adult beta-less than WT mice, as were femoral biomechanical properties (+28 to +49%, P < 0.01). Young male beta-less had higher vertebral (1.3-fold) and distal femoral (3.5-fold) trabecular bone volume than WT (P < 0.001 for both) and lower osteoclast surface. With aging, these differences lessened, with histological evidence of increased osteoclast surface and decreased bone formation rate at the distal femur in beta-less vs. WT mice. Serum tartrate-resistance alkaline phosphatase-5B was elevated in beta-less compared with WT mice from 8-16 wk of age (P < 0.01). Ovariectomy inhibited bone mass gain and decreased trabecular bone volume/total volume similarly in beta-less and WT mice. Altogether, these data indicate that absence of beta-adrenergic signaling results in obesity and increased cortical bone mass in males but does not prevent deleterious effects of estrogen deficiency on trabecular bone microarchitecture. Our findings also suggest direct positive effects of weight and/or leptin on bone turnover and cortical bone structure, independent of adrenergic signaling. (Endocrinology 150: 144-152, 2009)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据