4.5 Article

Intrauterine Growth Restriction Increases Fetal Hepatic Gluconeogenic Capacity and Reduces Messenger Ribonucleic Acid Translation Initiation and Nutrient Sensing in Fetal Liver and Skeletal Muscle

期刊

ENDOCRINOLOGY
卷 150, 期 7, 页码 3021-3030

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2008-1789

关键词

-

资金

  1. National Institutes of Health [HD41505-02, DK52138, DKF32-082207, K068590]

向作者/读者索取更多资源

Expression of key metabolic genes and proteins involved in mRNA translation, energy sensing, and glucose metabolism in liver and skeletal muscle were investigated in a late-gestation fetal sheep model of placental insufficiency intrauterine growth restriction (PI-IUGR). PI-IUGR fetuses weighed 55% less; had reduced oxygen, glucose, isoleucine, insulin, and IGF-I levels; and had 40% reduction in net branched chain amino acid uptake. In PI-IUGR skeletal muscle, levels of insulin receptor were increased 80%, whereas phosphoinositide-3 kinase (p85) and protein kinase B (AKT2) were reduced by 40%. Expression of eukaryotic initiation factor-4e was reduced 45% in liver, suggesting a unique mechanism limiting translation initiation in PI-IUGR liver. There was either no change (AMP activated kinase, mammalian target of rapamycin) or a paradoxical decrease (protein phosphatase 2A, eukaryotic initiation factor-2 alpha) in activation of major energy and cell stress sensors in PI-IUGR liver and skeletal muscle. A 13-to 20-fold increase in phosphoenolpyruvate carboxykinase and glucose 6 phosphatase mRNA expression in the PI-IUGR liver was-associated with a 3-fold increase in peroxisome proliferator-activated receptor-gamma coactivator-1 alpha mRNA and increased phosphorylation of cAMP response element binding protein. Thus PI-IUGR is-associated with reduced branched chain amino acid uptake and growth factors, yet up-regulation of proximal insulin signaling and a marked increase in the gluconeogenic pathway. Lack of activation of several energy and stress sensors in fetal liver and skeletal muscle, despite hypoxia and low energy status, suggests a novel strategy for survival in the PI-IUGR fetus but with potential maladaptive consequences for reduced nutrient sensing and insulin sensitivity in postnatal life. (Endocrinology 150: 3021-3030, 2009)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据