4.6 Review

Effects of Leptin on the Skeleton

期刊

ENDOCRINE REVIEWS
卷 39, 期 6, 页码 938-959

出版社

ENDOCRINE SOC
DOI: 10.1210/er.2017-00226

关键词

-

资金

  1. Health Research Council of New Zealand

向作者/读者索取更多资源

Leptin originates in adipocytes, including those in bone marrow, and circulates in concentrations 20 to 90 times higher than those in the cerebrospinal fluid. It has direct anabolic effects on osteoblasts and chondrocytes, but it also influences bone indirectly, via the hypothalamus and sympathetic nervous system, via changes in body weight, and via effects on the production of other hormones (e.g., pituitary). Leptin's role in bone physiology is determined by the balance of these conflicting effects. Reflecting this inconsistency, the leptin-deficient mouse has reduced length and bone mineral content of long bones but increased vertebral trabecular bone. A consistent bone phenotype in human leptin deficiency has not been established. Systemic leptin administration in animals and humans usually exerts a positive effect on bone mass, and leptin administration into the cerebral ventricles usually normalizes the bone phenotype in leptin-deficient mice. Reflecting the role of the sympathetic nervous system in mediating the central catabolic effects of leptin on the skeleton, beta-adrenergic agonists and antagonists have major effects on bone in mice, but this is not consistently seen in humans. The balance of the central and peripheral effects of leptin on bone remains an area of substantial controversy and might vary between species and according to other factors such as body weight, baseline circulating leptin levels, and the presence of specific pathologies. In humans, leptin is likely to contribute to the positive relationship observed between adiposity and bone density, which allows the skeleton to respond appropriately to changes in soft tissue mass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据