4.7 Article

Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation

期刊

EMBO REPORTS
卷 9, 期 2, 页码 179-186

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.embor.7401157

关键词

cardiac hypertrophy; G protein-coupled receptor; inverse agonist; mechanical stress; molecular model

向作者/读者索取更多资源

The angiotensin II type 1 (AT(1)) receptor is a G protein-coupled receptor that has a crucial role in the development of load-induced cardiac hypertrophy. Here, we show that cell stretch leads to activation of the AT1 receptor, which undergoes an anticlockwise rotation and a shift of transmembrane (TM) 7 into the ligand-binding pocket. As an inverse agonist, candesartan suppressed the stretch-induced helical movement of TM7 through the bindings of the carboxyl group of candesartan to the specific residues of the receptor. A molecular model proposes that the tight binding of candesartan to the AT(1) receptor stabilizes the receptor in the inactive conformation, preventing its shift to the active conformation. Our results show that the AT(1) receptor undergoes a conformational switch that couples mechanical stress-induced activation and inverse agonist-induced inactivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据