4.8 Article

Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology

期刊

EMBO JOURNAL
卷 32, 期 10, 页码 1478-1488

出版社

WILEY
DOI: 10.1038/emboj.2013.79

关键词

GALNT; GPCRs; LDLR; TNF alpha; Zinc finger nucleases

资金

  1. Kirsten og Freddy Johansen Fonden
  2. A.P. Moller og Hustru Chastine Mc-Kinney Mollers Fond til Almene Formaal
  3. Carlsberg Foundation
  4. Novo Nordisk Foundation
  5. Danish Research Councils
  6. University of Copenhagen
  7. Sino-Danish Breast Cancer Centre
  8. Danish National Research Foundation [DNRF107]

向作者/读者索取更多资源

Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate the exploration of how site-specific O-glycosylation regulates protein function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据