4.8 Editorial Material

Clamping the clamp of RNA polymerase

期刊

EMBO JOURNAL
卷 30, 期 7, 页码 1190-1191

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/emboj.2011.76

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM058750, R01 GM58750] Funding Source: Medline

向作者/读者索取更多资源

Bacterial NusG and its archaeal and eukaryal orthologues Spt5 are the only general transcription factors conserved across the three domains of life. The best studied among them, NusG, is found to be associated with the majority of the transcribed genes in the genome (with its paralogue RfaH picking up the slack) (Belogurov et al, 2009), and is implicated in regulating the lateral mobility of RNA polymerase (RNAP) (Bar-Nahum et al, 2005; Herbert et al, 2010), transcription termination and anti-termination (Nudler and Gottesman, 2002), coordinating transcription and translation (Burmann et al, 2010; Proshkin et al, 2010), and silencing horizontally transferred genes (Cardinale et al, 2008). Understanding of the mechanism of these factors requires detailed structural information about the complexes they are a part of, most importantly that of transcription elongation. Several high-resolution structures of proteins from this family are available, but until now the attempts to co-crystallize NusG or Spt5 with its primary target, RNAP, have failed. Two recent works from the labs of Murakami (Klein et al, 2011) and Cramer (in this issue of The EMBO Journal) succeeded in circumventing the problems that plagued the conventional strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据