4.8 Article

POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation

期刊

EMBO JOURNAL
卷 29, 期 5, 页码 924-933

出版社

WILEY
DOI: 10.1038/emboj.2009.409

关键词

POT1; processivity; telomerase; TPP1; translocation

资金

  1. NIH [GM28039]

向作者/读者索取更多资源

Telomerase contributes to chromosome end replication by synthesizing repeats of telomeric DNA, and the telomeric DNA-binding proteins protection of telomeres (POT1) and TPP1 synergistically increase its repeat addition processivity. To understand the mechanism of increased processivity, we measured the effect of POT1-TPP1 on individual steps in the telomerase reaction cycle. Under conditions where telomerase was actively synthesizing DNA, POT1 TPP1 bound to the primer decreased primer dissociation rate. In addition, POT1-TPP1 increased the translocation efficiency. A template-mutant telomerase that synthesizes DNA that cannot be bound by POT1-TPP1 exhibited increased processivity only when the primer contained at least one POT1-TPP1-binding site, so a single POT1 TPP1-DNA interaction is necessary and sufficient for stimulating processivity. The POT1-TPP1 effect is specific, as another single-stranded DNA-binding protein, gp32, cannot substitute. POT1-TPP1 increased processivity even when substoichiometric relative to the DNA, providing evidence for a recruitment function. These results support a model in which POT1-TPP1 enhances telomerase processivity in a manner markedly different from the sliding clamps used by DNA polymerases. The EMBO Journal (2010) 29, 924-933. doi: 10.1038/emboj.2009.409; Published online 21 January 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据