4.8 Article

cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner

期刊

EMBO JOURNAL
卷 27, 期 7, 页码 1005-1016

出版社

WILEY
DOI: 10.1038/emboj.2008.39

关键词

cell cycle; elongation factor 2; mitosis; protein synthesis; translation

资金

  1. Biotechnology and Biological Sciences Research Council Funding Source: Medline

向作者/读者索取更多资源

The calcium/calmodulin-dependent kinase that phosphorylates and inactivates eukaryotic elongation factor 2 (eEF2 kinase; eEF2K) is subject to multisite phosphorylation, which regulates its activity. Phosphorylation at Ser359 inhibits eEF2K activity even at high calcium concentrations. To identify the kinase that phosphorylates Ser359 in eEF2K, we developed an extensive purification protocol. Tryptic mass fingerprint analysis identified it as cdc2 (cyclin-dependent kinase 1). cdc2 co-purifies with Ser359 kinase activity and cdc2-cyclin B complexes phosphorylate eEF2K at Ser359. We demonstrate that cdc2 contributes to controlling eEF2 phosphorylation in cells. cdc2 is activated early in mitosis. Kinase activity against Ser359 in eEF2K also peaks at this stage of the cell cycle and eEF2 phosphorylation is low in mitotic cells. Inactivation of eEF2K by cdc2 may serve to keep eEF2 active during mitosis (where calcium levels rise) and thereby permit protein synthesis to proceed in mitotic cells. Amino-acid starvation decreases cdc2's activity against eEF2K, whereas loss of TSC2 (a negative regulator of mammalian target of rapamycin complex 1(mTORC1)) increases it. These data closely match the control of Ser359 phosphorylation and indicate that cdc2 may be regulated by mTORC1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据