4.5 Article

Alkanethiol-functionalized organosilicon monoliths for nano-reversed-phase liquid chromatography

期刊

ELECTROPHORESIS
卷 39, 期 22, 页码 2919-2928

出版社

WILEY
DOI: 10.1002/elps.201800280

关键词

Column efficiency; Hybrid stationary phase; Organosilicon monolith; Plate height; RP chromatography

资金

  1. Scientific and Technological Research Council of Turkey, TUBITAK by a 1001 project [115Z250]
  2. Turkish Academy of Science

向作者/读者索取更多资源

Organosilicon monoliths carrying chromatographic ligands with different alkyl chain lengths were obtained by thiol-methacrylate photopolymerization. The use of thiol-ene chemistry in the presence of a main monomer with a series of methacrylate functionality (i.e., methacrylate substituted polyhedral oligomeric silsesquioxane) allowed the synthesis of organosilicon monoliths with high cross-linking density and carrying hydrophobic alkyl-chain ligands by a one-pot process. In the synthesis runs, 1-butanethiol, 1-octanethiol, and 1-octadecanethiol were used as the hydrophobic thiol ligands with the number of methylene units between 4 and 18. The selectivity analysis performed using cytosine/uracil retention ratio showed that alkanethiol-attached organosilicon monoliths exhibited hydrophobicity close to octadecyl-attached silica-based RP columns. In the RP, chromatographic runs performed in nano-liquid chromatography, phenols, alkylbenzenes, and PAHs were used as the analytes. Among the synthesized monoliths, retention-independent plate height behavior and the smallest plate heights were obtained with 1-octadecanethiol-attached organosilicon monolith for the analytes in a wide polarity range. With this monolith, the mobile phases prepared with ACN contents ranging between 35 and 85% v/v could be used for satisfactory separation of analytes in a wide polarity range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据