4.5 Article

Gold nanoparticles electroporation enhanced polyplex delivery to mammalian cells

期刊

ELECTROPHORESIS
卷 35, 期 12-13, 页码 1837-1845

出版社

WILEY
DOI: 10.1002/elps.201300617

关键词

Electroporation; Gene Delivery; Gold Nanoparticles; Polyplex

资金

  1. NIH/National Cancer Institute (NCI) [R15CA156146]

向作者/读者索取更多资源

Nonviral methods have been explored as the replacement of viral systems for their low toxicity and immunogenicity. However, they have yet to reach levels competitive to their viral counterparts. In this paper, we combined physical and chemical methods to improve the performance of polyplex delivery of DNA and small interfering RNA. Specifically, gold nanoparticles (AuNPs) were used to carry polyplex (a chemical approach) while electroporation (a physical approach) was applied for fast and direct cytosolic delivery. In this hybrid approach, cationic polymer molecules condense and/or protect genetic probes as usual while AuNPs help fix polycations to reduce their cytotoxicity and promote the transfection efficiency of electroporation. AuNPs of various sizes were first coated with polyethylenimine, which were further conjugated with DNA plasmids or small interfering RNA molecules to form AuNPs-polyplex. The hybrid nanoparticles were then mixed with cells and introduced into cell cytosol by electroporation. The delivery efficiency was evaluated with both model anchor cells (i.e., NIH/3T3) and suspension cells (i.e., K562), together with their impact on cell viability. We found that AuNP-polyplex showed 1.5 similar to 2 folds improvement on the transfection efficiency with no significant increase of toxicity when compared to free plasmid delivery by electroporation alone. Such a combination of physical and chemical delivery concept may stimulate further exploration in the delivery of various therapeutic materials for both in vitro and in vivo applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据