4.5 Article

A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation

期刊

ELECTROPHORESIS
卷 34, 期 22-23, 页码 3126-3132

出版社

WILEY
DOI: 10.1002/elps.201300340

关键词

Microchannel-integrated micropillars; Microfabrication technique; PDMS deformation

向作者/读者索取更多资源

PDMS is one of the most common materials used for the flow delivery in the microfluidics chips, since it is clear, inert, nontoxic, and nonflammable. Its inexpensiveness, straightforward fabrication, and biological compatibility have made it a favorite material in the exploratory stages of the bio-microfluidic devices. If small footprint assays want to be performed while keeping the throughput, high pressure-rated channels should be used, but PDMS flexibility causes an important issue since it can generate a large variation of microchannel geometry. In this work, a novel fabrication technique based on the prevention of PDMS deformation is developed. A photo-sensible thiolene resin (Norland Optical Adhesive 63, NOA 63) is used to create a rigid coating layer over the stiff PDMS micropillar array, which significantly reduces the pressure-induced shape changes. This method uses the exact same soft lithography manufacturing equipment. The verification of the presented technique was investigated experimentally and numerically and the manufactured samples showed a deformation 70% lower than PDMS conventional samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据