4.5 Article

Insulator-based dielectrophoretic single particle and single cancer cell trapping

期刊

ELECTROPHORESIS
卷 32, 期 18, 页码 2550-2558

出版社

WILEY-BLACKWELL
DOI: 10.1002/elps.201100066

关键词

Insulator-based dielectrophoresis; MCF-7 cells; Microparticles; Single cell trap

向作者/读者索取更多资源

Trapping of individual cells at specific locations in a microfluidic lab-on-a-chip platform is essential for single cell studies, especially those requiring individual stimulation followed by downstream analysis. To this aim, we have designed microdevices based on direct current (DC) insulator-based dielectrophoresis (iDEP) acting as individual single cell traps. We present both the design of a negative iDEP trap and a positive iDEP trap using insulating posts integrated at microchannel intersections. We obtained electric field distributions via numerical simulations adapted to the intersection and trap geometry with which we predict single particle pathlines. With polystyrene particles of 10 mm diameter, we demonstrated an effective design for a single particle trap in the case of negative dielectrophoresis. The onset trapping voltage shows an inverse relation to the buffer conductivity, thus indicating the influence of electrokinetic effects on the trapping behavior. Additionally, we demonstrated the proof-of-principle of single MCF-7 breast cancer cell trapping in a positive iDEP trap. Our single particle trapping experiments were further in very good agreement with numerical simulations. To ensure that no significant damage occurred to the cells during the experiment, we further optimized medium conditions to ensure viability of the cells for at least 1 h, more than sufficient for microfluidic trapping experiments. Our results thus indicated the successful design of DC iDEP traps, which can easily be integrated into a variety of microchip operations for single cell analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据