4.5 Article

Monolithic column with double mixed-modes of hydrophilic interaction/cation-exchange and reverse-phase/cation-exchange stationary phase for pressurized capillary electrochromatography

期刊

ELECTROPHORESIS
卷 29, 期 4, 页码 928-935

出版社

WILEY
DOI: 10.1002/elps.200700600

关键词

double mixed-modes; hydrophilic interaction/cation-exchange; monolithic column; pressurized capillary electrochromatography; reverse-phase/cation-exchange

向作者/读者索取更多资源

A monolithic capillary column with double mixed-modes of hydrophilic interaction/cation-exchange and RP/cation-exchange stationary phase was prepared by in situ thermal polymerization and then hydrolyzed with hydrochloric acid. The polymerization solution containing glycidyl methacrylate (GMA), 3-sulfopropyl methacrylate potassium salt (SPMA), and ethylene dimethacrylate (EDMA) in a binary porogenic solvent consisting of dimethylformamide (DMF) and 1,4-butanediol was polymerized in a fused-silica capillary pretreated with 3-(trimetoxysilyl) propyl methacrylate. The epoxy groups on the surface were hydrolyzed to diol groups with hydrochloric acid to enhance the polarity of the stationary phase. By simply altering the ACN content in the mobile phase, two mixed-mode mechanisms could be achieved on the same monolithic column in different mobile phase condition. Hydrophilic interaction (or hydrophilic interaction/cation-exchange) was observed at high ACN content, as well as RP (or RP/cation-exchange) was observed at low ACN content. The monolithic column provided good selectivity and high efficiency for separation of neutral polar analytes and basic compounds. Phenols, anilines, alkaloids, nucleic acid bases, and narcotic pharmaceuticals have been successfully separated. Effects of salt concentration and ACN content on the separation have also been investigated. High column efficiencies of up to 352 000 plates/meter were obtained by the separation of narcotic pharmaceuticals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据