4.6 Article

Spin-dependent electrochemistry: Enantio-selectivity driven by chiral-induced spin selectivity effect

期刊

ELECTROCHIMICA ACTA
卷 286, 期 -, 页码 271-278

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.08.023

关键词

Spin-dependent electrochemistry; Nickel; Chirality; Enantio-recognition; Spin injection; CISS

资金

  1. University of Modena and Reggio Emilia (Department of Engineering 'Enzo Ferrari'), through Spin-Dependent Electrochemistry, FAR2016

向作者/读者索取更多资源

Spin-Dependent Electrochemistry (SDE) is a new paradigm in electrochemistry where the electrochemical response of a chiral electrod vertical bar solution interface is studied as a function of spin-polarized current. In this work, the SDE concept is further developed exploring the use of the chiral imprinting concept, which is implemented in two different, complementary, ways i) a chiral compound in bulk solution to obtain chiral-induced spin selectivity effect at the ferromagnetic (FM) electrode surface ii) conversely, a chiral-ferromagnetic (CFM) hybrid working electrode is produced: nickel is electrochemically co-deposited with a chiral compound, L-ta or D (-) tartaric acid, which is added to the electrodeposition bath; this allows to obtain a chiral co-deposited nickel-tartaric acid (Ni-LTA or Ni-DTA) working electrode. As a further innovation, the ferromagnetic working electrode is prepared by direct Ni electrodeposition on the north, or south, pole of a permanent magnet. The electrochemical response of these two chiral imprinted systems is studied by comparing cyclic voltammetry (CV) curves. The latter are recorded in the potential range relevant to the Ni(III)/Ni(II) electrochemical equilibrium, and also in the presence of glucose in bulk solution. An impressive variation in peak potentials is found when comparing CVs recorded on the north, versus south, pole of the magnet (in particular, when the co-deposited CFM working electrode is used). These results are properly rationalized within the Chiral-Induced Spin Selectivity (CISS) effect. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据