4.6 Article

Understanding Persulfate Production at Boron Doped Diamond Film Anodes

期刊

ELECTROCHIMICA ACTA
卷 150, 期 -, 页码 68-74

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2014.10.104

关键词

Boron Doped Diamond; BDD; Anode; Persulfate; Electrosynthesis

资金

  1. National Science Foundation Small Business Innovative Research Program [1058505]
  2. Div Of Industrial Innovation & Partnersh
  3. Directorate For Engineering [1058505] Funding Source: National Science Foundation

向作者/读者索取更多资源

This research used molecular modeling and rotating disk electrode experiments (RDE) to investigate possible reaction pathways for persulfate production via electrolysis of sulfuric acid solutions using boron doped diamond (BDD) film anodes. Density functional theory (DFT) modeling indicated that uncatalyzed oxidation of SO42 and HSO4 occurs at lower potentials than water oxidation, and that sulfate radical species (SO4 (center dot) and HSO4 center dot) may be produced via direct electron transfer, or via reaction with hydroxyl radicals. The RDE experiments indicated that rates of persulfate generation were strongly dependent of the condition of the electrode surface, and that aged electrode surfaces favored water oxidation over direct SO42 and HSO4 oxidation. Combination of sulfate radical species in solution is the lowest energy pathway for persulfate production. Sulfate radical species may also react with radical sites on the electrode surface and produce chemisorbed intermediates that can stabilize sulfate radical species. Reaction of the chemisorbed intermediates with a bisulfate radical can produce persulfate via a surface catalyzed pathway. However, the activation barriers for this pathway are much higher than those for persulfate production via solution phase species. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据