4.6 Article

Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine

期刊

ELECTROCHIMICA ACTA
卷 104, 期 -, 页码 12-18

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.04.079

关键词

Hydrogen peroxide; Cobalt (II) phthalocyanine; Gas diffusion electrode; Oxygen reduction reaction; Rotating ring-disk electrode

资金

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

向作者/读者索取更多资源

Hydrogen peroxide (H2O2) is a commonly used oxidant with a wide variety of applications in, for example, organic synthesis and wastewater treatment. This paper describes the development of catalysts for the electrogeneration of H2O2 in acidic medium using gas diffusion electrodes (GDE). Initial experiments were performed using rotating ring-disk electrodes modified with microporous layers of Printex 6L carbon containing various amounts of cobalt (II) phthalocyanine (CoPc) in order to evaluate catalytic activities. The results showed that the current efficiency for the formation of H2O2 increased from 69.7% for Printex 6L carbon without catalyst to 81.5% when using Printex 6L carbon with CoPc, and this was accompanied by a decrease in the number of electrons involved in the oxygen reduction reaction from 2.6 to 2.3. Based on these findings, modified GDEs were constructed containing 3.0, 5.0 and 10.0% of CoPc on Printex 6L carbon. The concentration of H2O2 that formed after 90 min electrolysis with the GDE modified with Printex 6L carbon alone was 176 mg L-1, while the GDE with 5.0% CoPc on carbon produced 331 mg L-1 of H2O2, i.e. an increase in yield of 89.1% relative to Printex 6L carbon. Additionally, using GDE s modified with CoPc on carbon, the potential at which H2O2 formation attained its maximum value shifted to less negative values in comparison with electrodes without catalyst. It is concluded that CoPc is an appropriate catalyst for efficient electrogeneration of H2O2. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据