4.6 Article

Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media

期刊

ELECTROCHIMICA ACTA
卷 112, 期 -, 页码 269-278

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.08.174

关键词

Iron phthalocyanine; Graphene; Amidation reaction; ORR

向作者/读者索取更多资源

A novel iron(II) phthalocyanine covalently modified graphene (FePc-Gr) was synthesized by reduction of the product obtained through an amidation reaction between carboxyl-functionalized graphene oxide (CFGO) and iron(II) tetra-aminophthalocyanine (FeTAPc). The FePc-Gr hybird was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS), respectively. The electrocatalytic properties of FePc-Gr toward the oxygen reduction reaction (ORR) were evaluated using cyclic voltammetry (CV) and linear sweep voltarnmetry methods. The peak potential of the ORR on the FePc-Gr catalyst was found to be about -0.12 V vs. SCE in 0.1 M NaOH solution, which was 180 and 360 mV more positive than that on FeTAPc and bare GCE, respectively. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements revealed that the ORR mechanism was nearly via a direct four-electron pathway to water on FePc-Gr. The current still remained 83.5% of its initial after chronoamperometric test for 10,000 s. Nevertheless, Pt/C catalyst only retained 40.5% of its initial current. The peak potential and peak current changed slightly when 3 M methanol was introduced. So the FePc-Gr composite catalyst for ORR exhibited high activity, good stability and methanol-tolerance, which could be used as a promising Pt-free catalyst for ORR in alkaline direct methanol fuel cell (DMFC). (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据