4.6 Article

Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation

期刊

ELECTROCHIMICA ACTA
卷 106, 期 -, 页码 432-439

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.05.093

关键词

ZrTi alloys; Thermal oxidation; Oxide films; Corrosion resistance; Impedance spectroscopy; Biomaterials

资金

  1. Romanian National Authority for Scientific Research, CNCS-UEFISCDI [PN-II-ID-PCE-2011-3-0218]
  2. Ministerio de Ciencia e Innovacion (MICINN, Madrid, Spain)
  3. European Regional Development Fund (Brussels, Belgium) [CTQ2012-36787]
  4. MICINN

向作者/读者索取更多资源

Oxidation in air of ZrTi alloys at 500 degrees C for 2 h produces oxide-covered materials with a very high corrosion resistance in Ringer's solution at 37 degrees C. The oxide layers present a two-layer structure, comprised by a thin and very compact inner layer of ca. 5 nm thickness, and a less compact, more porous and thicker outer layer. The thickness of the outer layer greatly varies with the composition of the base ZrTi alloy, but has very little influence in the overall electrochemical behaviour of the material. The nature of the oxide layer is a mixture of ZrO2 and TiO2, and no evidence of higher oxidation states of the metal could be found using XRD data. Anodic dissolution through the passive layers formed on the oxidized alloys is greatly diminished compared to those measured from the untreated materials, allowing all the alloying ratios between Zr and Ti to be potentially considered for implant application. The combination of alloying with titanium and oxidation in air at 500 degrees C resulted in materials that do not exhibit the characteristic susceptibility of zirconium towards the initiation of localized corrosion processes in aqueous chloride-containing electrolytes even for anodic polarizations up to +1.00 V vs. SCE, a value well above the highest polarization experienced in the human body. Though all the oxidized alloys exhibited remarkable corrosion resistances, the best behaviour was found for oxidized Zr45Ti. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据