4.6 Article

Controlling electron injection and electron transport of dye-sensitized solar cells aided by incorporating CNTs into a Cr-doped TiO2 photoanode

期刊

ELECTROCHIMICA ACTA
卷 111, 期 -, 页码 921-929

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.08.079

关键词

Dye-sensitized solar cell; Electron injection; Electron transport; Cr-doped TiO2; CNT

资金

  1. Iran National Science Foundation (INSF)

向作者/读者索取更多资源

In the present work, we focused on simultaneously control electron injection and electron transport, in dye-sensitized solar cells (DSSCs), aided by introducing Cr3+ and CNTs into a TiO2 photoanode, respectively. X-ray photoelectron spectroscopy (XPS) revealed that, Cr3+ and CNTs were successfully incorporated into the TiO2 lattice without forming secondary phases. X-ray diffraction (XRD) analysis showed that Cr introduction has perfectly balanced the amount of anatase and rutile phases in order to accomplish a more efficient cell. Field emission scanning electron microscope (FE-SEM) images showed deposited films to have a porous morphology composed of nanoparticles and TiO2 nanoparticles (TNTs) coated CNTs. Moreover, the presence of Cr3+ could improve the morphology of CNT-TiO2 electrodes. UV-vis absorption showed that Cr and CNT introduction enhanced the visible light absorption of photoanode by shifting the absorption onset to visible light region. Furthermore, the band gap energy of nanoparticles decreases with an increase in dopant concentration. The solar cell composed of 3 at.% Cr3+ and 0.025 wt% CNTs (i.e., T2/C3 cell) had the highest power conversion efficiency of 7.47%, short current density of 17.54 mA/cm(2) and open circuit voltage of 698 mV. The photovoltaic improvement can be related to the achievement of a balance among the electron injection, electron transport and dye sensitization parameters. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据