4.6 Article

Probing the temperature dependence of proton transfer to charged platinum electrodes by reactive molecular dynamics trajectory studies

期刊

ELECTROCHIMICA ACTA
卷 101, 期 -, 页码 341-346

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.01.146

关键词

Proton discharge; Molecular dynamics simulation; Reactive trajectories; Interfacial electrochemistry; Electrocatalysis

资金

  1. DFG within the framework of the DFG Research Unit 1376 Elementary reaction steps in electrocatalysis: Theory meets Experiment

向作者/读者索取更多资源

We have performed reactive trajectory calculations of proton discharge on charged platinum surfaces as a function of temperature and charge. A recently developed 9-state empirical valence bond model has been employed. The temperature dependence follows an Arrhenius law with activation energies in the range of 0.1 eV. The activation energy for the discharge reaction decreases significantly with increasing driving force as modeled by an increasingly negative surface charge on the electrode. The analysis shows that the average orientation of molecules in the adsorbed water layer reacts to the approaching proton. Within increasing temperature, configurations become more prevalent which facilitate fast proton transfer by Grotthuss style proton hops from the second to the first layer. This effect becomes more pronounced near more negatively charged surfaces and leads to the computed reduction of the activation energy. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据