4.6 Article

Electrochemical and photoelectrochemical characteristics of TiNbO5 nanosheet electrode

期刊

ELECTROCHIMICA ACTA
卷 81, 期 -, 页码 74-82

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2012.07.085

关键词

Titanoniobate; Nanosheet; Photochemistry; Electrochemistry; Photoelectrochemistry; Photocatalysis

资金

  1. National Natural Science Foundation of China [50872037, 21003055, 21103054]
  2. Natural Science Foundation of Fujian Province [2010J01040]

向作者/读者索取更多资源

Exfoliated TiNbO5 nanosheets were obtained by delaminating a layered compound KTiNbO5. Employing a layer-by-layer electrostatic deposition technology, the exfoliated nanosheets were deposited into a multilayer composite film with polyethylenimine as the linker, confirmed by UV-vis absorption spectra and X-ray diffraction. The polymer-free TiNbO5 nanosheet multilayer film was achieved through the subsequent ultraviolet light exposure. The cyclic voltammogram of the resulting TiNbO5 nanosheet multilayer film electrode exhibited a reversible reduction-oxidation process of Ti3+/Ti4+, accompanying with the insertion/deinsertion of Li+ ions into/from the nanosheet galleries. The bandgap energy and flatband potential of TiNbO5 nanosheet were observed to be 3.47 eV and -1.01 V vs. Ag/AgCl, respectively. The investigation on the photoelectrocatalytic degradation of Rhodamine B with the TiNbO5 nanosheet electrodes revealed that both the oxygen anionic radicals and the dye cationic radical are essential for the mineralization of the dye under visible light-driven photocatalytic conditions, and that the electron separation under an anode bias can suppress the rapid recombination of the photogenerated charge carriers under ultraviolet light irradiation. It is the first time to investigate the mechanism of photoelectrocatalysis for TiNbO5 nanosheet electrode. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据