4.6 Article

Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors

期刊

ELECTROCHIMICA ACTA
卷 56, 期 9, 页码 3203-3208

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2011.01.053

关键词

Aluminium electrodeposition; Controlled current; Nano-rods; Nucleation; Three-dimensional Li-ion micro-battery

资金

  1. SUPERLION
  2. Swedish Research Council VR [621-2008-3690, 621-2008-3800, 621-2009-3345]

向作者/读者索取更多资源

Constant current and pulsed current electrodeposition of aluminium nano-rods, for use as three-dimensional (3D) Li-ion micro-battery current collectors, have been studied using an ionic liquid electrolyte (1-ethyl-3-methylimidazolium chloride/aluminium chloride) and a template consisting of a commercial alumina membrane. It is shown that the homogeneity of the height of the rods can be improved significantly by inclusion of a short (i.e. 50 ms) potential pulse prior to the controlled current deposition step. The latter potential step increased the number of aluminium nuclei on the aluminium substrate and the best results were obtained for a potential of -0.9 V vs. Al/Al3+. The obtained nanostructured surfaces, which were characterized using electron microscopy and X-ray diffraction, consisted of parallel aligned aluminium nano-rods homogeneously distributed over the entire surface of the substrate. A narrower height distribution for the rods was obtained using a pulsed galvanostatic approach then when using a constant current, most likely due to the less favourable diffusion conditions in the latter case. The results also indicate that depletion and iR drop effects within the nano-pores result in a more homogeneous height distribution. It is concluded that the height distribution of the nano-rods is controlled by a combination of the nucleation probability in each pore at the start of the experiment, and the homogeneity of the diameters of the pores within the commercial alumina membranes employed as the electrodeposition template. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据