4.6 Article

Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnOx) nanoparticles

期刊

ELECTROCHIMICA ACTA
卷 56, 期 24, 页码 8551-8558

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2011.07.041

关键词

Ammonia electro-oxidation; Nanoparticles; Carbon support; Bi-metallic catalyst, Nitrogen adsorption

资金

  1. Natural Science and Engineering Research Council (NSERC)
  2. University of Ottawa

向作者/读者索取更多资源

Ammonia electro-oxidation was studied in alkaline solution on carbon-supported Pt and bimetallic PtyM1-y (M = Pd, It, SnOx and y =70, 50 at.%) nanoparticles. Catalysts were synthesized using the modified polyol method and deposited on carbon, resulting in 20 wt.% of metal loading. Particle size, structure and surface composition of the particles were investigated using TEM, XRD and XPS. Mean size of PtM bimetallic nanoparticles varied between 2.0 and 4.7 nm, depending on the second metal (M). XRD revealed the structure of all bi-metallic particles to be face-centered cubic and confirmed alloy formation for PtyPd1-y (y=70, 50 at.%) and Pt7Ir3 nanoparticles, as well as partial alloying between Pt and SnOx. Electrochemical behaviour of ammonia on Pt and PtM nanoparticles is comparable to that expected for bulk Pt and PtM alloys. Addition of Pd to Pt at the nanoscale decreased the onset potential of ammonia oxidation if compared to pure platinum nanoparticles; however stability of the catalyst was poor. For Pt-7(SnOx)(3), current densities were similar to Pt, whereas catalyst stability against deactivation was improved. It is found that carbon supported Pt7Ir3 nanoparticles combine good catalytic activity with enhanced stability for ammonia electro-oxidation. Electronic effect generated between two metals in the bimetallic nanoparticles might be responsible for increase in the catalytic activity of Pd- and Ir-containing catalysts, causing weakening of the adsorption strength of poisonous N-ads intermediate. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据