4.6 Article

Electron transfer pathways in microbial oxygen biocathodes

期刊

ELECTROCHIMICA ACTA
卷 55, 期 3, 页码 813-818

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2009.09.027

关键词

Biocathode; Extracellular electron transfer; Insoluble electron donor; Microbial fuel cell; Oxygen reduction

资金

  1. Japan Society for the Promotion of Science [PE 08026]

向作者/读者索取更多资源

The ability of some bacteria to enhance the rate of cathodic oxygen reduction to water has been recently discovered, opening the way to an entirely renewable and environmentally friendly concept of biocathode. In this study we reveal that several mechanisms may induce catalytic effects by bacteria. These comprise mechanisms that are putatively beneficial to the bacteria as well as mechanisms which are merely side effects, including quinone autoxidation and direct O(2) reduction by heme compounds. Here we showed that I mu M of ACNQ is able to generate a significant catalytic wave for oxygen reduction, with onset at approximately 0V vs. SHE. Similarly, adsorption of hemin on a carbon surface catalyses 02 reduction to H(2)O(2) with an onset of +0.2V vs. SHE. To evaluate the catalytic pathways of live cells on cathodic oxygen reduction, two species of electrochemically active bacteria were selected as pure cultures, namely Acinetobacter calcoaceticus and Shewanella putrefaciens. The former appears to exploit a self-excreted redox compound with redox characteristics matching those of pyrroloquinoline quinone (PQQ) for extracellular electron transfer. The latter appears to utilise outer membrane-bound redox compounds. Interaction of quinones and cytochromes with the membrane-bound electron transfer chain is yet to be proven. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据