4.6 Article

Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery

期刊

ELECTROCHIMICA ACTA
卷 55, 期 2, 页码 504-510

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2009.08.068

关键词

Pulsed magnetic field; Hydrothermal method; Aging technique; CMC (carboxymethyl cellulose) binder; Lithium-ion batteries

资金

  1. Australian Research Council [CE0561616]
  2. Australian Research Council [CE0561616] Funding Source: Australian Research Council

向作者/读者索取更多资源

Co3O4 nanoparticle samples were prepared as anode materials for lithium-ion batteries by the hydrothermal synthesis method without magnetic field (Co3O4-0T), under pulsed magnetic field (Co3O4-4T), and by using an aging technique (Co3O4-Aging), respectively. The morphology and structural properties of the Co3O4 nanoparticles were investigated by field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). FE-SEM measurements demonstrated that the Co3O4 sample formed under a 4T magnetic field consisted of large agglomerated spheres composed of numerous quasi-spherical nanoparticles with a typical diameter of similar to 25 nm and had more compact and smoother surfaces compared to a reference sample prepared without magnetic field. After the aging process, large Co3O4 hollow spheres composed of numerous spherical nanoparticles with a typical diameter of similar to 20 nm were formed. Electrochemical measurements showed that Co3O4 materials prepared by the aging technique (Co3O4 - Aging) yielded the best electrochemical performance compared with the other samples. Capacities were maintained at 274,348, and 407 mAh g(-1) up to 100 cycles for the Co3O4-0T, Co3O4-4T, and Co3O4-Aging materials, which are about 26,27, and 30% of initial discharge capacities. respectively. The capacity loss is in the order of Co3O4-Aging

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据