4.6 Article

Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries

期刊

ELECTROCHIMICA ACTA
卷 53, 期 5, 页码 2507-2513

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2007.10.020

关键词

cobalt oxide; microspheres anode material; lithium-ion batteries; hydrothermal synthesis

向作者/读者索取更多资源

Co3O5 microspheres were synthesized in mass production by a simple hydrothermal treatment. One micrometer-sized spherical particles with well-crystallization could be obtained by XRD and SEM. Higher specific surface area (93.4 m(2) g(-1)) and larger pore volume (78.4 cm(3) g(-1)) by BET measurements offered more interfacial bondings for extra sites of Li+ insertion, which resulted in the anomalous large initial irreversible capacity and capacity cycling loss due to SEI film formation. The capacity retention of Co3O4 microspheres involved first forming acted as Li-ion anode material is almost above 90% from 12th cycle and it retain lithium storage capacity of 550.2 mAh g(-1) after 25 cycles, which show good long-life stability. The electrochemical impedance spectroscopy (EIS) tests before and after cyclic voltammetry measurements and charge-discharge experiments were carried out and the corresponding D-i,D-j values were also calculated. The relationship of the ac impedance spectra and the cycling behaviors was discussed. It is found that the decrease of capacity results from the larger Li-* charge-transfer impedance and the lower lithium-diffusion processes on cycling, which is in very good agreement with the electrochemical behaviors of Co3O4 electrode. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据