4.6 Article

Efficient photoelectrochemical nanoemitter solar cell

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 10, 期 8, 页码 1184-1186

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2008.05.041

关键词

silicon electrochemistry; photoelectrochemical solar cell; platinum electrodeposition; self-organisation; nanoemitter

向作者/读者索取更多资源

Photoelectrochemical solar cells convert solar energy into electricity as fuels. The operation is based on the contact potential between a semiconductor and a redox electrolyte that results in the separation of photoinduced excess charge carriers. The applicability of photoelectrochemical solar energy conversion, however, is limited by photocorrosion at the reactive interface. Here, a new efficient photoelectrochemical solar cell is reported that avoids contact between semiconductor and electrolyte. The operational principle is based on metallic nanoemitters that form local contacts between the semiconductor absorber and the redox electrolyte while the remaining semiconductor surface is covered by an insulating anodic oxide. The nanoporous oxide, prepared by an oscillatory self-organised electrochemical process, serves as a template for spatially selective metal nanoemitter electrodeposition, resulting in a Si/SiO2/Pt nanocomposite structure after Pt deposition. In contact with I-/I-3(-) redox electrolyte, a solar conversion efficiency of 11.2% has been obtained with the cell n-Si/SiO2/Pt/I-/I-3(-)/C. The novel concept is characterized by the scalability of the employed oscillatory process, low-temperature processing, protection of the semiconductor surface from the solution and applicability in monolithically integrated solar fuel generating devices (photoelectrocatalysis) and solid-state solar cells. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据