4.2 Article

Novel Lithium Imides; Effects of -F, -CF3, and -CN Substituents on Lithium Battery Salt Stability and Dissociation

期刊

ELECTROCHEMISTRY
卷 80, 期 1, 页码 18-25

出版社

ELECTROCHEMICAL SOC JAPAN
DOI: 10.5796/electrochemistry.80.18

关键词

Electrolytes; Anion Stability; DFT; Ab Initio

资金

  1. Swedish Research Council (VR)
  2. Swedish Energy Agency (STEM)
  3. FORMAS

向作者/读者索取更多资源

New lithium imide salts have been studied using computational chemistry methods. Intrinsic anion oxidation potentials and ion pair dissociation energies are presented for six lithium sulfonyl imides (R-O2S-N-SO2-R) and six lithium phosphoryl imides (R-2-OP-N-PO-R-2), as a function of -F, -CF3, and -C N substitution. The modelled properties are used to estimate the electrochemical oxidation stability of the anions and the relative ease of charge carrier creation in lithium battery electrolytes. The results show that both properties are improved with cyano-substitution, which in part is corroborated when comparing with other classes of lithium salts. However, the comparison also shows ambiguous oxidation stability results for cyano-substituted reference salts of the type PFx(CN)((6) over bar -x) and BFx(CN)((4) over bar -x), using two different approaches - we present a tentative explanation for this. For the imide anions and PF6-, the bond dissociation energy is introduced as a third property, to gauge the thermal stability of the imide anions. The results suggest that the C-S and C-P bonds are the most liable to break and that the thermal stability is inversely related to the ion pair dissociation energy. (C) The Electrochemical Society of Japan, All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据