4.6 Article

A comprehensive control system for multi-parallel grid-connected inverters with LCL filter in weak grid condition

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 163, 期 -, 页码 288-300

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2018.06.015

关键词

Multi-parallel inverters; Active damping; Coupling effect; Grid voltage feedforward method; LCL filter

向作者/读者索取更多资源

Active damping methods are used for resonance damping in grid-connected inverters with LCL filter. In microgrids, parallel grid-connected inverters are coupled due to grid impedance introducing multiple resonances. In general, such coupling effect is not taken into account for modeling and controller design. For single grid connected inverter, despite good performance, the system tends to become instable with parallel connection of other inverters. Moreover, the grid injected current can be distorted by the grid voltage harmonics. In traditional control system, grid voltage is used as a feedforward signal to achieve harmonic rejection capability by boosting the inverter output impedance. However, this method introduces negative phase angle which could lead to control system instability. In this paper, the control system design for multi-parallel grid-connected inverters using active damping is clarified. Inverters with different characteristics are also modeled in a weak grid as a multivariable system while coupling effect with a wide variation of grid impedance is taken into account. An improved grid voltage feedforward method is proposed to eliminate negative aspects of the traditional method. The simulation results in MATLAB/SIMULINK software demonstrate the effectiveness of the proposed control system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据