4.8 Article

Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO3 Thin Films

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 6, 期 3, 页码 487-492

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jz502692a

关键词

-

资金

  1. MRSEC Program of the National Science Foundation [DMR-0819762]
  2. Skoltech-MIT Center for Electrochemical Energy
  3. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
  4. National Science Foundation [DGE-1122374]
  5. National Research Foundation of Korea (NRF) - Korean government (MSIP) [NRF-2014R1A2A2A01006478]

向作者/读者索取更多资源

The slow kinetics of the oxygen reduction and evolution reactions (ORR, OER) hinder energy conversion and storage in alkaline fuel cells and electrolyzers employing abundant transition metal oxide catalysts. Systematic studies linking material properties to catalytic activity are lacking, in part due to the heterogeneous nature of powder-based electrodes. We demonstrate, for the first time, that epitaxial strain can tune the activity of oxygen electrocatalysis in alkaline solutions, focusing on the model chemistry of LaCoO3, where moderate tensile strain can further induce changes in the electronic structure leading to increased activity. The resultant decrease in charge transfer resistance to the electrolyte reduces the overpotential in the ORR more notably than the OER and suggests a different dependence of the respective rate-limiting steps on electron transfer. This provides new insight into the reaction mechanism applicable to a range of perovskite chemistries, key to the rational design of highly active catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据