4.7 Article

Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Muller, 1774): Filtration rate, biochemical biomarkers and mercury bioconcentration

期刊

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
卷 164, 期 -, 页码 155-163

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2018.07.062

关键词

Microplastics; Mercury; Corbicula fluminea; Filtration rate; Biochemical biomarkers

资金

  1. Fundacao para a Ciencia e a Tecnologia, I.P. (FCT), Portugal
  2. FCT/MCTES [PTDC/MAR-PRO/1851/2014]
  3. European Regional Development Fund (ERDF) through the COMPETE 2020 [POCI-01-0145-FEDER-016885]
  4. Lisboa 2020 programmes [LISBOA-01-0145-FEDER-016885]
  5. Institute of Biomedical Sciences of Abel Salazar of the University of Porto (ICBAS-UP), Portugal
  6. FCT [SFRH/BD/82402/2011, SFRH/BPD/85219/2012]
  7. European Social Fund
  8. national funds of the Portuguese Ministry of Education and Science

向作者/读者索取更多资源

The main objectives of this study were to investigate the effects of a mixture of microplastics and mercury on Corbicula fluminea, the post-exposure recovery, and the potential of microplastics to influence the bioconcentration of mercury by this species. Bivalves were collected in the field and acclimated to laboratory conditions for 14 days. Then, a 14-day bioassay was carried out. Bivalves were exposed for 8 days to clean medium (control), microplastics (0.13 mg/L), mercury (30 mu g/L) and to a mixture (same concentrations) of both substances. The post-exposure recovery was investigated through 6 additional days in clean medium. After 8 and 14 days, the following endpoints were analysed: the post-exposure filtration rate (FR); the activity of cholinesterase enzymes (ChE), NADP-dependent isocitrate dehydrogenase (IDH), octopine dehydrogenase, catalase, glutathione reductase, glutathione peroxidase and glutathione S-transferases (GST), and the levels of lipid peroxidation (LPO). After 8 days of exposure to mercury, the bioconcentration factors (BCF) were 55 in bivalves exposed to the metal alone and 25 in bivalves exposed to the mixture. Thus, microplastics reduced the bioconcentration of mercury by C. fluminea. Bivalves exposed to microplastics, mercury or to the mixture had significantly (p <= 0.05) decreased FR and increased LPO levels, indicating fitness reduction and lipid oxidative damage. In addition, bivalves exposed to microplastics alone had significant (p <= 0.05) reduction of adductor muscle ChE activity, indicating neurotoxicity. Moreover, bivalves exposed to mercury alone had significantly (p <= 0.05) inhibited IDH activity, suggesting alterations in cellular energy production. Antagonism between microplastics and mercury in FR, ChE activity, GST activity and LPO levels was found. Six days of post-exposure recovery in clean medium was not enough to totally reverse the toxic effects induced by the substances nor to eliminate completely the mercury from the bivalve's body. These findings have implications to animal, ecosystem and human health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据