4.7 Article

Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity

期刊

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
卷 164, 期 -, 页码 344-354

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2018.08.004

关键词

Antioxidant enzymes; Drought stress; Osmolytes; Osmotic adjustment; Inorganic ions and K+/Na+ ratio

资金

  1. Chinese Academy of Sciences (CAS)-the Academy of Sciences for the Developing World (TWAS) President's Fellowship Program for international Ph.D. students
  2. Strategic Priority Research Program of the Chinese Academy of Sciences, China [XDA19030204]

向作者/读者索取更多资源

Quinoa (Chenopodium quinoa Willd.), a highly nutritious grain crop, is resistant to abiotic stresses (drought, salinity, and cold) and offers an alternate crop to endure harsh environmental conditions under the face of climate change. Naturally, quinoa genome displays a wide degree of variabilities in drought tolerance strategies. Therefore, the present study was designed to investigate drought tolerance variations and stress tolerance enhancement in four quinoa genotypes (Pichaman, Colorado-407D, IESP and 2-Want) thorough foliage-applied H2O2 with the purpose of identifying suitable genotype for water limited environments. The plants were exposed to two watering regimes (75% and 30% pot WHC) and foliage-applied H2O2 treatments (15 mM). The drought stress significantly reduced plant growth, relative water contents, chlorophyll and carotenoids contents and increased ROS production (H2O2 and O-2(center dot-)) resulting in higher oxidative damage in all quinoa genotypes. Besides, drought stress significantly enhanced the antioxidants (SOD, PPO, and PAL) activity, total soluble sugars, proline, AsA contents and increased the total accumulation of measured inorganic ions in all quinoa genotypes. The PCA analysis indicated that parameters related to osmotic adjustment and antioxidant capacity were more pronounced in 2-Want and IESP genotypes, while parameters depicting oxidative damage were higher in Colorado-407D and more specifically in Pichaman. However, foliage-applied H2O2 effectively improved the osmolytes accumulation, antioxidants activity and K+/Na* ratio which increased water relations, reduced lipid peroxidation and ultimately resulted in higher plant growth. Overall, 2-Want and IESP genotypes were found relatively more drought resistant, while exogenous application of H2O2 can be opted for more improvement in osmotic adjustment and antioxidant system, which may further enhance drought tolerance, even in sensitive genotypes of quinoa, such as Pichaman.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据