4.8 Article

Spatial Localization of Excitons and Charge Carriers in Hybrid Perovskite Thin Films

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 6, 期 15, 页码 3041-3047

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.5b01050

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division

向作者/读者索取更多资源

The fundamental photophysics underlying the remarkably high-power conversion efficiency of organic-inorganic hybrid perovskite-based solar cells has been increasingly studied using complementary spectroscopic techniques. However, the spatially heterogeneous polycrystalline morphology of the photoactive layers owing to the presence of distinct crystalline grains has been generally neglected in optical measurements; therefore, the reported results are typically averaged over hundreds or even thousands of such grains. Here we apply femtosecond transient absorption microscopy to spatially and temporally probe ultrafast electronic excited-state dynamics in pristine methylammonium lead tri-iodide (CH3NH3PbI3) thin films and composite structures. We found that the electronic excited-state relaxation kinetics are extremely sensitive to the sample location probed, which was manifested by position-dependent decay time scales and transient signals. Analysis of transient absorption kinetics acquired at distinct spatial positions enabled us to identify contributions of excitons and free charge carriers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据