4.8 Article

Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 6, 期 17, 页码 3503-3509

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.5b01738

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences [SC0012541]

向作者/读者索取更多资源

Halide perovskite solar cells are a recent ground-breaking development achieving power conversion efficiencies exceeding 18%. This has become possible owing to the remarkable properties of the AMX(3) perovskites, which exhibit unique semiconducting properties. The most efficient solar cells utilize the CH3NH3PbI3 perovskite whose band gap, Eg, is 1.55 eV. Even higher efficiencies are anticipated, however, if the band gap of the perovskite can be pushed deeper in the near-infrared region, as in the case of CH3NH3SnI3 (Eg = 1.3 eV). A remarkable way to improve further comes from the CH3NH3Sn,,PbI3 solid solution, which displays an anomalous trend in the evolution of the band gap with the compositions approaching x = 0.5 displaying lower band gaps (E-g approximate to 1.1 eV) than that of the lowest of the end member, CH3NH3SnI3. Here we use firstprinciples calculations to show that the competition between the spin orbit coupling (SOC) and the lattice distortion is responsible for the anomalous behavior of the band gap in CH3NH3Sn1-xPbI3. SOC causes a linear reduction as x increases, while the lattice distortion causes a nonlinear increase due to a composition-induced phase transition near x = 0.5. Our results suggest that electronic structure engineering can have a crucial role in optimizing the photovoltaic performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据