4.6 Article

An Experimental and Theoretical Approach to Understanding the Surface Properties of One-Dimensional TiO2 Nanomaterials

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 119, 期 34, 页码 19729-19742

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b02027

关键词

-

资金

  1. Ministry of Science, Education and Sports of the Republic of Croatia [119-1191342-2961]
  2. Alexander von Humboldt (AvH) Foundation
  3. KIT
  4. SMG
  5. Unity through Knowledge Fund, Croatia grant [17/13]
  6. National Science Foundation [CHE-0514458]
  7. Corning, Inc.
  8. CUNY Center of Advance Technology in Photonics
  9. New York State Science and Technology Foundation
  10. PSC-BHE Grant Program of CUNY
  11. Ministry of Science, Education and Sports of the Republic of Croatia
  12. DAAD agency in Germany

向作者/读者索取更多资源

The present research focuses on the comparative investigation of the acid base surface properties (the isoelectric point, pH(iep) and point of zero charge, pH(pzc)) of one-dimensional TiO2 nanomaterials. Different one-dimensional TiO2 nanomaterials, nanotubes (NTs) and nanowires (NWs) were prepared by an alkaline hydrothermal synthesis procedure. The structural properties of the synthesized TiO2 nanomaterials were investigated with high-resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The NWs and NTs were characterized using Raman and Fourier transform infrared (FT-IR) spectroscopy as well as Brunauer Emmett Teller (BET) measurements. Surface properties, i.e. pH(iep) and pH(pzc) of NWs and NTs were determined from electrokinetic measurements, potentiometric mass and electrolyte titrations. The relative acidity for the NWs is found to be in the interval 3 < pH(iep) < 4 in comparison with the NTs, with 4 < pH(iep) < 6. The observed differences in the relative acidity are correlated with differences in crystal structure of the studied nanomaterials and their resulting morphology. In addition, our results reveal a strong electrolyte effect on the characteristic points, pH(iep) and pH(pzc), especially the higher cation affinity for both TiO2 nanomaterials surfaces that has a significant effect on the pH of the system. Application of the multisite complexation (MUSIC) model yields a satisfactory description of the electrokinetic data and can explain observed salt effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据