4.5 Article

The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site

期刊

ECOSYSTEMS
卷 14, 期 7, 页码 1055-1065

出版社

SPRINGER
DOI: 10.1007/s10021-011-9463-5

关键词

moss; evaporation; ground heat flux; shrub; permafrost; tundra; Arctic; climate change

类别

资金

  1. Darwin Center for Biogeosciences
  2. Wageningen Institute for Environment and Climate Research (WIMEK)

向作者/读者索取更多资源

Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosystem processes involved in water and energy exchange, but very little empirical data are available. Here, we studied the effect of experimental moss removal on both understory evapotranspiration and ground heat flux in plots with either a thin or a dense low shrub canopy in a tundra site with continuous permafrost in Northeast Siberia. Understory evapotranspiration increased with removal of the green moss layer, suggesting that most of the understory evapotranspiration originated from the organic soil layer underlying the green moss layer. Ground heat flux partitioning also increased with green moss removal indicating the strong insulating effect of moss. No significant effect of shrub canopy density on understory evapotranspiration was measured, but ground heat flux partitioning was reduced by a denser shrub canopy. In summary, our results show that mosses may exert strong controls on understory water and heat fluxes. Changes in moss or shrub cover may have important consequences for summer permafrost thaw and concomitant soil carbon release in Arctic tundra ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据