4.5 Article

A Process-Based View of Floodplain Forest Patterns in Coastal River Valleys of the Pacific Northwest

期刊

ECOSYSTEMS
卷 13, 期 1, 页码 1-31

出版社

SPRINGER
DOI: 10.1007/s10021-009-9298-5

关键词

floodplain; coastal river; riverine processes; productivity; Pacific Northwest; riparian; alluvial soils; epiphytes; large wood; Queets; River

类别

资金

  1. Andrew W. Mellon Foundation
  2. Pacific Northwest Research Station of the U. S. Forest Service
  3. Weyerhaeuser Company
  4. National Science Foundation
  5. National Marine Fisheries Service
  6. Washington Sea Grant Program
  7. University of Washington
  8. Olympic National Park
  9. U.S. Forest Service lands

向作者/读者索取更多资源

Floodplains in the Pacific Coastal Ecoregion (PCE) stem from steep eroding mountain landscapes in a rain forest environment, and sustain a rich array of natural resources. Like floodplains elsewhere, many of the approximately 200 coastal river valleys are profoundly altered by flow regulation and land conversion for agriculture and urban development, and these activities have contributed to widespread declines in anadromous fishes and environmental quality. Some of the coastal river valleys, however, still retain many of their natural features, thereby providing important reference sites. Understanding fundamental biophysical processes underpinning natural floodplain characteristics is essential for successfully protecting and restoring ecological integrity, including inherent goods and services. This article examines factors underpinning the ecological characteristics of PCE floodplains, particularly riparian soils and trees. Drawing on over two decades of research and literature, we describe the spatial and temporal characteristics of physical features for alluvial PCE floodplains, examine the importance of sediment deposition and associated biogeochemical processes in floodplain soil formation, quantify vegetative succession and production dynamics of riparian trees, discuss how epiphytes, marine-derived nutrients, and soil processes contribute to tree production, describe the roles and importance of large dead wood in the system, the role of termites in its rapid decomposition, and show how large wood contributes to vegetative succession. These highly interconnected features and associated processes are summarized in a model of system-scale drivers and changes occurring over several centuries. Collectively, this integrated perspective has strong implications for floodplain rehabilitation, and we identify appropriate metrics for evaluating floodplain condition and functions. We draw heavily from our own experience on several well-studied rivers, recognizing additional studies are needed to evaluate the generality of concepts presented herein. As in any complex adaptive system, fundamental uncertainties remain and constraints imposed by the legacies of past human actions persist. Nevertheless, the evolving knowledge base is improving conservation strategies of lightly modified floodplains and is supporting the incorporation of emerging process-based perspectives into the rehabilitation of heavily modified systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据