4.5 Article

Northern Delta Lakes as Summertime CO2 Absorbers Within the Arctic Landscape

期刊

ECOSYSTEMS
卷 12, 期 1, 页码 144-157

出版社

SPRINGER
DOI: 10.1007/s10021-008-9213-5

关键词

CO2 flux; arctic lakes; arctic deltas; permafrost melting; dissolved organic carbon; lake-landscape connectivity; shallow productive lakes; climate change

类别

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Science Horizons Youth Internship Program
  3. Northern Scientific Training Program
  4. NSERC Northern Research Internship
  5. NSERC CGS-D scholarship
  6. Simon Fraser University CD Nelson Scholarship
  7. Garfield Weston Award

向作者/读者索取更多资源

The vast majority of lakes examined worldwide emit CO2 to the overlying atmosphere, through a process by which catchment-derived subsidies of terrigenous C, often in the form of dissolved organic carbon (DOC), augment within-lake CO2 production above the level consumed via photosynthesis. We show that shallow, macrophyte-rich lakes of the Mackenzie Delta, western Canadian Arctic, do not follow this pattern. These lakes are strong summertime CO2 absorbers, despite DOC concentrations at or above levels commonly shown to produce CO2 emission. Paradoxically, CO2 levels were lowest where DOC was greatest, in lakes which appear to be annual net CO2 absorbers, and have poor hydrologic connection to the terrestrial landscape. CO2 in these lakes is depleted by high macrophyte productivity, and although catchment-derived C subsidies are low, within-lake DOC generation appears to occur as a byproduct of macrophyte photosynthesis and evapoconcentration. Additionally, after accounting for DOC and macrophytes, lakes that were least connected to the larger terrestrial landscape remained weaker CO2 absorbers, suggesting that CO2 balance may also be affected by DOC quality, foodweb structure, or inputs of pCO(2)-rich riverwater to connected lakes. In contrast, a small subset of Delta lakes that were strongly affected by permafrost melting were CO2 emitters, suggesting future permafrost degradation could engender a change in the overall CO2 balance of these lakes from near-CO2 neutral over the ice-free season, to clear CO2 emission. Our work suggests that the current paradigm of lakewater CO2 regulation may need to specifically incorporate shallow, productive lakes, and those that are poorly connected to their surrounding landscape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据