4.5 Article

Landscape and ecosystem-level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low arctic tundra

期刊

ECOSYSTEMS
卷 11, 期 3, 页码 377-396

出版社

SPRINGER
DOI: 10.1007/s10021-008-9128-1

关键词

carbon; soil; plant; temperature; moisture; heath; birch; sedge; hummock; vegetation; Canada; climate change

类别

向作者/读者索取更多资源

Our understanding of the controls and magnitudes of regional CO2 exchanges in the Arctic are limited by uncertainties due to spatial heterogeneity in vegetation across the landscape and temporal variation in environmental conditions through the seasons. We measured daytime net ecosystem CO2 exchange and each of its component fluxes in the three major tundra ecosystem-types that typically occur along natural moisture gradients in the Canadian Low Arctic biweekly during the full snow-free season of 2004. In addition, we used a plant-removal treatment to compare the contribution of bulk soil organic matter to total respiratory CO2 loss among these ecosystems. Net CO2 exchange rates varied strongly, but not consistently, among ecosystems in the spring and summer phases as a result of ecosystem-specific and differing responses of gross photosynthesis and respiration to temporal variation in environmental conditions. Overall, net carbon gain was largest in the wet sedge ecosystem and smallest in the dry heath. Our measures of CO2 flux variation within each ecosystem were frequently most closely correlated with air or soil temperatures during each seasonal phase. Nevertheless, a particularly large rainfall event in early August rapidly decreased respiration rates and stimulated gross photosynthetic rates, resulting in peak rates of net carbon gain in all ecosystems. Finally, the bulk soil carbon contribution to total respiration was relatively high in the birch hummock ecosystem. Together, these results demonstrate that the relative influences of moisture and temperature as primary controls on daytime net ecosystem CO2 exchange and its component fluxes differ in fundamental ways between the landscape and ecosystem scales. Furthermore, they strongly suggest that carbon cycling responses to environmental change are likely to be highly ecosystem-specific, and thus to vary substantially across the low arctic landscape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据