4.6 Article

Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 120, 期 1, 页码 616-620

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b11075

关键词

-

资金

  1. European Research Council under the European Union/ERC [337328]
  2. Philips
  3. FOM

向作者/读者索取更多资源

Lead-based, inorganicorganic hybrid perovskites have shown much promise in photovoltaics, and the ability to tune their band gap makes them attractive for tandem solar cells, photodetectors, light-emitting diodes, and lasers. A crucial first step toward understanding a materials behavior in such optoelectronic devices is determining its complex refractive index, n + ik; however, optically smooth films of hybrid perovskites are challenging to produce, and the optical properties of films of these materials have been shown to depend on the size of their crystallites. To address these challenges, this work reports quantitative reflectance and transmittance measurements performed on individual microcrystals of CH3NH3PbBr3, with thicknesses ranging from 155 to 1907 nm. The single crystals are formed by spin-coating a film of precursor solution and then stamping it with polydimethylsiloxane (PDMS) during crystallization. By measuring crystals of varying thickness, n and k values at each wavelength (405-1100 nm) have been determined, which agree with recently reported values extracted by ellipsometry on millimeter-sized single crystals. This approach can be applied to determine the optical constants of any material that presents challenges in producing smooth films over large areas, such as mixed-halide hybrid and inorganic perovskites, and to micro- or nanoplatelets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据