4.6 Article

Shape-Dependent Field Enhancement and Plasmon Resonance of Oxide Nanocrystals

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 119, 期 11, 页码 6227-6238

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b01648

关键词

-

资金

  1. U.S. Department of Energy (DOE) through the SBIR program
  2. Welch Foundation [F-1848]

向作者/读者索取更多资源

Metallic nanostructures can manipulate light-matter interactions to induce absorption, scattering, and local heating through their localized surface plasmon resonances. Recently, plasmonic behavior of semiconductor nanocrystals has been investigated to stretch the boundaries of plasmonics farther into the infrared spectral range and to introduce unprecedented tunability. However, many fundamental questions remain regarding characteristics of plasmons in doped semiconductor nanocrystals. Field enhancement, especially near features with high curvature, is essential in many applications of plasmonic metal nanostructures, yet the potential for plasmonic field enhancement by semiconductor nanocrystals remains unknown. Here, we use the discrete dipole approximation (DDA) to understand the dependence of field enhancement on size, shape, and doping level of plasmonic semiconductor nanocrystals. Indium-doped cadmium oxide is considered as a prototypical material for which faceted cube-octohedral nanocrystals have been experimentally realized; their optical spectra are compared to our computational results. The computed extinction spectra are sensitive to changes in doping level, dielectric environment, and shape and size of the nanocrystals, providing insight for materials design. High-scattering efficiencies and efficient local heat production make 100 nm particles suitable for photothermal therapies and simultaneous bioimaging. Meanwhile, single particles and dimers of nanocrystals demonstrate strong, shape- and wavelength-dependent near-field enhancement, highlighting their potential for applications in infrared sensing, imaging, spectroscopy, and solar conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据