4.8 Article

Tree carbon allocation explains forest drought-kill and recovery patterns

期刊

ECOLOGY LETTERS
卷 21, 期 10, 页码 1552-1560

出版社

WILEY
DOI: 10.1111/ele.13136

关键词

Carbon metabolism; CO2 fertilisation; drought; hydraulic-carbon coupling; lagged mortality; optimality theory; plant hydraulics; stem respiration; vegetation model; xylem damage

类别

向作者/读者索取更多资源

The mechanisms governing tree drought mortality and recovery remain a subject of inquiry and active debate given their role in the terrestrial carbon cycle and their concomitant impact on climate change. Counter-intuitively, many trees do not die during the drought itself. Indeed, observations globally have documented that trees often grow for several years after drought before mortality. A combination of meta-analysis and tree physiological models demonstrate that optimal carbon allocation after drought explains observed patterns of delayed tree mortality and provides a predictive recovery framework. Specifically, post-drought, trees attempt to repair water transport tissue and achieve positive carbon balance through regrowing drought-damaged xylem. Furthermore, the number of years of xylem regrowth required to recover function increases with tree size, explaining why drought mortality increases with size. These results indicate that tree resilience to drought-kill may increase in the future, provided that CO2 fertilisation facilitates more rapid xylem regrowth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据