4.8 Review

The evolution of species interactions across natural landscapes

期刊

ECOLOGY LETTERS
卷 14, 期 7, 页码 723-732

出版社

WILEY
DOI: 10.1111/j.1461-0248.2011.01632.x

关键词

Community ecology; evolutionary ecology; evolving metacommunity; gene flow; landscape genetics; local adaptation; meta-analysis; metapopulation

类别

资金

  1. National Center for Ecological Analysis and Synthesis

向作者/读者索取更多资源

Given the potential for rapid and microgeographical adaptation, ecologists increasingly are exploring evolutionary explanations for community patterns. Biotic selection can generate local adaptations that alter species interactions. Although some gene flow might be necessary to fuel local adaptation, higher gene flow can homogenise traits across regions and generate local maladaptation. Herein, I estimate the contributions of local biotic selection, gene flow and spatially autocorrelated biotic selection to among-population divergence in traits involved in species interactions across 75 studies. Local biotic selection explained 6.9% of inter-population trait divergence, an indirect estimate of restricted gene flow explained 0.1%, and spatially autocorrelated selection explained 9.3%. Together, biotic selection explained 16% of the variance in population trait means. Most biotic selection regimes were spatially autocorrelated. Hence, most populations receive gene flow from populations facing similar selection, which could allow for local adaptation despite moderate gene flow. Gene flow constrained adaptation in studies conducted at finer spatial scales as expected, but this effect was often confounded with spatially autocorrelated selection. Results indicate that traits involved in species interactions might often evolve across landscapes, especially when biotic selection is spatially autocorrelated. The frequent evolution of species interactions suggests that evolutionary processes might often influence community ecology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据