4.6 Article

DRIFTS of Probe Molecules Adsorbed on Magnesia, Zirconia, and Hydroxyapatite Catalysts

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 119, 期 17, 页码 9186-9197

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp509889j

关键词

-

资金

  1. Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-95ER14549]

向作者/读者索取更多资源

Acid sites, base sites, and acid-base site pairs on zirconia, magnesia, and hydroxyapatite were investigated using diffuse reflectance FT-IR spectroscopy (DRIFTS) to evaluate the interaction of various adsorbed probe molecules with their surfaces. The DRIFTS spectra were recorded under continuous flow conditions at atmospheric total pressure during a temperature-programmed thermal ramp. Lewis acidity was assessed by observing the various pyridine ring mode conformations and the peak shift associated with adsorption of CO. Basicity was probed by the adsorption of CO2 to form carbonates and bicarbonates on the samples. The acidbase bifunctional nature of the oxides was explored by adsorption of acetylene and glycine. As expected, zirconia exposed the strongest Lewis acid sites of the three samples, whereas magnesia exhibited the strongest basic sites. In contrast, hydroxyapatite had a poor affinity for all probe molecules used in this study based on temperature-programmed desorption experiments, indicating the presence of only weak acid and base sites on the surface, which might account for its high catalytic activity and unique selectivity in the Guerbet coupling of ethanol to butanol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据