4.6 Article

Molecular Dynamics Simulations about Adsorption and Displacement of Methane in Carbon Nanochannels

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 119, 期 24, 页码 13652-13657

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b02436

关键词

-

资金

  1. National Science Foundation of China [11472263]

向作者/读者索取更多资源

Adsorption and displacement are two important issues in the exploitation of shale gas. In this study, molecular dynamics (MD) simulations are employed to study the mechanisms about adsorption and displacement of methane in carbon nanochannels. Here, the nanochannel is modeled as the slit pore. Because of the attractive potentials of the walls, more methane molecules can be stored in the slit pore compared to the bulk phase, and part of them are in the adsorption state. As the width of slit pore increases, the structure of adsorbed methane transforms from single adsorption layer to four adsorption layers. Moreover, it is found that the small slit pore fills up quicker and can store more methane than the larger one under relatively low pressure due to its deeper potential well. To displace the adsorbed methane and enhance the gas recovery, injection gases such as carbon dioxide and nitrogen are simulated and investigated. The displacement mechanisms of the two gases are found to be different: carbon dioxide can replace the adsorbed, methane directly while nitrogen works by decreasing the partial pressure of methane. The simulation results show that injection of carbon dioxide gives slow breakthrough time, sharp front, while injection of nitrogen gives fast breakthrough time, wide front. Our work can be of great significance for revealing the mechanisms of adsorption and displacement and guiding the exploitation of shale gas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据