4.7 Article

A spatial mark-resight model augmented with telemetry data

期刊

ECOLOGY
卷 94, 期 3, 页码 553-559

出版社

WILEY
DOI: 10.1890/12-1256.1

关键词

abundance; Bayesian statistics; camera trapping; density; mark-resight; Metropolis-within-Gibbs sampler; population estimation; Procyon lotor; raccoons; spatial capture-recapture; telemetry

类别

资金

  1. Natural Resource Preservation Program of the U.S. Geological Survey and National Park Service

向作者/读者索取更多资源

Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad hoc approaches. We developed a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows <100% individual identification of marked individuals. We implemented the model in a Bayesian framework, using a custom-made Metropolis-within-Gibbs Markov chain Monte Carlo algorithm. As an example, we applied this model to a mark-resight study of raccoons (Procyon lotor) on South Core Banks, a barrier island in Cape Lookout National Seashore, North Carolina, USA. We estimated a population of 186.71 +/- 14.81 individuals, which translated to a density of 8.29 +/- 0.66 individuals/km(2) (mean +/- SD). The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据